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ABSTRACT 

The objectives of this ongoing research project focus on health monitoring and 
data analytics of concrete slabs with alkali-silica reaction (ASR) degradation. 
Researchers at Vanderbilt University cast a controlled concrete slab with four 
pockets of reactive aggregates (pure silica, wells, placitas, and spratt) and cured in 
representative conditions to accelerate degradation due to ASR. A set of four 
concrete samples were also cast and cured at the University of Alabama for ASR 
testing. Of these four samples, two slabs contained reactive aggregates while the 
other two had the non-reactive aggregate counterparts mixed throughout the 
samples. Vibro-acoustic testing was used on these slabs to locate ASR damage 
within the reactive samples. 

Vibro-acoustic modulation (VAM) is a vibration-based nondestructive 
examination (NDE) method that utilizes signatures of nonlinear dynamic 
interactions on contact surfaces of crack or delamination damage to detect and 
localize the damage. VAM analysis was conducted on both the Vanderbilt and 
Alabama samples using multiple variables for damage detection and localization. 
This report discusses in detail the results from the data analysis of the vibro-
acoustic testing on concrete slabs cured at Vanderbilt University and the University 
of Alabama. Results for damage localization are dependent on multiple variables 
used in the vibro-acoustic modulation experiments. A major focus of this report is 
to quantify the uncertainty in the diagnosis due to multiple factors and uncertainty 
sources. Researchers applied the uncertainty quantification methodology presented 
in this report to VAM-based diagnosis and prognosis. However, the methodology 
is general, and is capable of being applied to multiple techniques that collect 
spatially distributed data. Future work needs to investigate the incorporation of 
uncertainty quantification in developing a robust Prognostics and Health 
Management framework. 

Digital image correlation is a three-dimensional, full-field, optical NDE 
technique to measure contour, deformation, vibration, and strain. This report also 
discusses the application of the digital image correlation technique to study ASR-
related degradation on a large concrete specimen at the University of Tennessee. 
Research observations are collected and presented in this report.  
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EXECUTIVE SUMMARY 

One challenge facing the current fleet of light water reactors in the United States is age-related 
degradation of their passive assets, including concrete, cables, piping, and the reactor pressure vessel. As 
the current fleet of nuclear power plants (NPPs) continues to operate for 60 years or more, it is important 
to understand the current and the future condition of passive assets under different operating conditions 
that would support operational and maintenance decisions. To ensure safe and reliable long-term 
operation of the current fleet, the U.S. Department of Energy’s Office of Nuclear Energy funds the Light 
Water Reactor Sustainability Program to develop the scientific basis for extending the operation of 
commercial light water reactors beyond the current license extension period. 

In this project, researchers focused on NPP concrete structures rather than other passive assets. These 
reinforced concrete structures can be grouped into following categories: (1) primary containment; 
(2) containment internal structures; (3) secondary containments/reactor buildings; and (4) spent fuel pool 
and cooling towers.  

These concrete structures are affected by a variety of degradation mechanisms that are related to 
chemical, physical, and mechanical causes, as well as to irradiation. Age-related degradation of concrete 
results in gradual microstructural changes (e.g., slow hydration, crystallization of amorphous constituents, 
and reactions between cement paste and aggregates). Structural health monitoring of concrete helps assess 
the current condition of a structure and provides high-confidence actionable information regarding 
structural integrity and reliability.  

Vanderbilt University, in collaboration with Idaho National Laboratory and Oak Ridge National 
Laboratory, is developing a probabilistic framework for structural health monitoring and managing the 
condition of aging concrete structures in NPPs. This integrated framework includes four elements: (1) 
monitoring; (2) data analytics; (3) uncertainty quantification; and (4) prognosis. 

This continuing research project collected degradation data for concrete structures from a series of 
experiments conducted under controlled laboratory conditions. Also being assessed is the ability of 
nondestructive examination (NDE) methods to characterize concrete deterioration and correlate it with 
structural performance.  

This report focuses on concrete degradation caused by alkali-silica reaction (ASR). Concrete specimens 
were prepared to develop accelerated ASR degradation in a laboratory setting. NDE techniques, which 
include thermography, mechanical deformation measurements, nonlinear impact resonance-acoustic 
spectroscopy, and vibro-acoustic modulation (VAM), were previously used to detect the damage caused by 
ASR on concrete slabs cured at Vanderbilt University, and documented in an earlier report.  

The objectives of this report were to examine the application of VAM and digital image correlation 
(DIC) techniques in ASR damage diagnosis and to develop approaches for uncertainty quantification in 
diagnosis. The VAM technique was applied to a 24 in. x 24 in. x 6 in. slab cast at Vanderbilt University 
with four pockets of reactive aggregates, and four 24 in. x 12 in. x 12 in. slabs with reactive and non-reactive 
aggregates (dispersed throughout the slabs). The DIC technique was applied to a large concrete mock-up at 
the University of Tennessee, Knoxville. The main outcomes of the experiments and subsequent analyses 
include: 

1. VAM successfully detected and localized the damage in the medium-sized concrete slabs from both 
Vanderbilt and Alabama. The detection and locations of damage using VAM technique is 
dependent on the pumping and probing actuator locations, the two excitation amplitudes, and the 
two excitation frequencies.  

2. The uncertainty quantification effort first developed a neural network surrogate model to speed up 
the forward and inverse problems in uncertainty quantification.  
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3. The neural network model is verified by comparison with the experimental data, and the observed 
agreement is moderate. 

4. The neural network model is employed to quantify the uncertainty in the damage diagnosis, and 
the result is shown as probability of damage at each location. 

5. The neural network is also employed for sensitivity analysis, thus quantifying the relative 
contributions of different experimental parameters on the uncertainty of the damage diagnosis. 

The monitoring of the large specimen at the University of Tennessee is complete, and the DIC 
analysis results presented in this report cover the entire range of DIC data collected over the two-year 
period.  

The uncertainty quantification methodology presented in this report was applied to VAM-based 
diagnosis and prognosis. However, the methodology is general and can be applied to multiple techniques 
that collect spatially distributed data. Future work needs to investigate the incorporation of uncertainty 
quantification in developing a robust Prognostics and Health Management framework. 
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Uncertainty Quantification in Vibro-Acoustics 
Diagnosis of Alkali-Silica Reaction Degradation in 

Medium-Sized Concrete Samples 
 

1. INTRODUCTION 
The majority of existing nuclear power plants (NPPs) continue to operate beyond their initial licensed 

life expectancy. As NPPs continue to operate, their passive structures, systems, and components suffer 
deterioration that affects structural integrity and performance. Monitoring the condition of these elements 
of an NPP is essential for ensuring that their conditions meet performance and safety requirements over the 
entire expected plant lifespan.  

This project focuses on concrete structures in NPPs. The concrete structures are grouped into the 
following categories: (1) primary containment; (2) containment internal structures; (3) secondary 
containment/reactor buildings; and (4) other structures such as used fuel pools, dry storage casks, and 
cooling towers. These concrete structures are affected by a variety of chemical, physical, and mechanical 
degradation mechanisms, such as alkali-silica reaction (ASR), chloride penetration, sulfate attack, 
carbonation, freeze-thaw cycles, shrinkage, and mechanical loading (Naus 2007). The age-related 
deterioration of concrete results in continuing microstructural changes (e.g., slow hydration, crystallization 
of amorphous constituents, and reactions between cement paste and aggregates). Therefore, it is important 
that changes to these passive structures and systems are measured and monitored over long periods of time. 
Researchers must analyze impacts on the integrity of the components to support long-term operations and 
maintenance decisions of existing fleet of nuclear reactors. 

Structural health monitoring (SHM) can produce actionable information regarding structural integrity. 
When conveyed to the decision-maker, the information enables risk management with respect to structural 
integrity and performance. The SHM methods and technologies include assessment of critical 
measurements, monitoring, and analysis of aging concrete structures under different operating conditions. 
In addition to data from the specific system being monitored, information may also be available for similar 
or nominally identical systems in an operational NPP fleet, as well as legacy systems. Therefore, to take 
advantage of this valuable information Christensen (1990) suggested that assessment and management of 
aging concrete structures in NPPs requires a more systematic and dynamic approach than simple reliance 
on existing code margins of safety. 

Through the Light Water Reactor Sustainability Program, national laboratories (Idaho National 
Laboratory and Oak Ridge National Laboratory) and universities (Vanderbilt University, University of 
Nebraska-Lincoln, University of Alabama, University of South Carolina, and Georgia Tech University) 
have begun research on concrete SHM techniques. The focus in this report is on the collaboration between 
national laboratories and Vanderbilt University in researching concrete SHM in accordance with the 
proposed framework discussed in Mahadevan et al. (2014).  

The goal of this research is to enable plant operators to make risk-informed decisions on structural 
integrity, remaining useful life, and performance of concrete structures across the NPP fleet. The long-term 
research objective of this project is to produce actionable information regarding structural integrity that is 
individualized for a structure of interest and its performance goals. In addition, the project supports the 
research objectives of three pathways under the Light Water Reactor Sustainability Program (i.e., the 
Advanced Information, Instrumentation, and Control Systems Technologies Pathway; the Materials Aging 
and Degradation Pathway; and the Risk-Informed Safety Margin Characterization Pathway). 
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Vanderbilt University, in collaboration with Idaho National Laboratory and Oak Ridge National 
Laboratory, is developing a framework for evaluating and forecasting the health of aging NPP concrete 
structures that are subject to physical, chemical, and mechanical degradation (Mahadevan et al. 2014; 
Agarwal and Mahadevan 2014). The framework will investigate concrete structure degradation by 
integrating the following technical elements: (1) health condition monitoring; (2) data analytics; (3) 
uncertainty quantification; and (4) prognosis. For details on each element of the proposed framework, refer 
to Mahadevan et al. (2014). The framework will help plant operators to make risk-informed decisions on 
structural integrity, remaining useful life, and concrete structure performance. The demonstration 
performed at Vanderbilt University using various techniques to assess ASR degradation in controlled 
concrete specimens was reported in Mahadevan et al. (2016, 2017). 

The objective of this report is to examine the use of vibro-acoustic modulation (VAM) in informing the 
PHM framework. A series of experiments were conducted at the Vanderbilt University to provide sufficient 
degradation data in support of the PHM framework (Mahadevan et al. 2014; Mahadevan et al. 2016) used to 
examine and forecast the condition of aging concrete structures in NPPs. Within this experimental campaign, 
multiple concrete slab samples are exposed to different accelerated aging conditions in a laboratory to ensure 
formation of ASR gel within an observable time frame. These concrete samples also differ in sizes and types of 
embedded aggregates. The above-mentioned VAM is used to detect and assess the ASR-induced damage in 
these concrete samples over an extended period of time.  

The technical background, experimental setting, data processing, significant results, technical findings, and 
conclusion are included in the remainder of the report is organized as follows: 

 Section 2 discusses the technical basics of the ASR development and the VAM and DIC techniques used to 
assess the effects of ASR on the integrity of concrete samples developed at Vanderbilt University.  

 Section 3 describes the various concrete specimens exposed to different ASR accelerated degradation 
conditions and the laboratory experimental setup of the VAM and DIC techniques. 

 Section 4 presents data analysis methods applied to the collected monitoring data and significant technical 
findings. 

 Section Error! Reference source not found. discusses uncertainty quantification of ASR damage diagnosis 
using VAM test results. 

 Section 6 describes the application of DIC technique to the large concrete slab cast at the University of 
Tennessee, Knoxville. 

 Section 7 discusses the research summary and future work.  

2. TECHNICAL BACKGROUND 
2.1 Alkali-Silica Reaction Development and Impact  

The ASR is a reaction in concrete between the alkali hydroxides (K+ and Na+) in the pore solution and the 
reactive non-crystalline (amorphous) silica (S2+) found in many common aggregates, given sufficient moisture. 
This reaction occurs over time and causes the expansion of the altered aggregate by the formation of a swelling 
gel of calcium silicate hydrate (C-S-H). Reactive silica is mainly provided by reactive aggregates and the alkalis 
by the cement clinker. ASR swelling results from the relative volume increase between the product and reactant 
phases involved in the chemical reaction. First, the products expand in pores and micro-cracks of the 
cementitious matrix. Once this free expansion space is filled, the swelling is restrained, and the product phases 
exert local pressure on the surrounding concrete skeleton (Ulm 2000). Figure 1 depicts the mechanism of ASR 
(Kreitman 2011). 

With the presence of water, the ASR gel increases in volume and exerts an expansive pressure inside the 
material, causing spalling micro-to macro-cracks (due to nonhomogeneous swelling related to non-uniform 
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moisture distribution). As a result, ASR reduces the stiffness and tensile strength of concrete, because these 
properties are particularly sensitive to micro-cracking. ASR also can cause serious cracking in concrete, resulting 
in critical structural problems that can even force the demolition of a particular structure. The serviceability of 
concrete structures includes the resistance to excessive deflections, as well as a host of other durability concerns 
that can shorten the service life of a structure. Large surface crack widths and deep penetration of open surface 
cracks promote ingress moisture and any dissolved aggressive agents, such as chlorides. Additionally, of concern 
for concrete deflection capabilities is loss of concrete stiffness and potential for reinforcement yield. 

ASR is a complex chemical phenomenon, the rate and extent of which depend on a number of material and 
environmental parameters, for which the interactions among parameters is not fully understood. This critical 
nature of ASR on premature concrete deterioration requires the quantitative assessment of ASR structural effects 
during service life (both in time and space). In particular, a combined experimental modeling investigation 
method is required to evaluate the impact of ASR on the dimensional stability of concrete structures. Although 
ASR has been identified as a cause of deterioration of numerous concrete structures and research has yielded 
some understanding of the mechanism of the reaction, the structural effects of ASR and how to best assess the 
extent of damage to existing structures remain major topics of ongoing research. This is because the expansion 
and cracking patterns (the most obvious sign of distress) caused by ASR affect both the concrete and the 
reinforcing steel, but similar crack patterns can also be produced by other distress mechanisms (i.e., drying 
shrinkage and sulfate attack). 

 
Figure 1: Mechanism of ASR (Kreitman 2011). 

In the nuclear industry, a scoping study of ASR in concrete is performed to support future activities 
that include evaluating the effects of ASR on the structural capacity. From a safety perspective, the 
remaining capacity of a structure exhibiting distress due to ASR is an important factor in operational and 
maintenance management decisions. This is a challenging task for various reasons. First, the extent of the 
degradation will vary throughout the element as a function of the moisture content and as a function of the 
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degree of restraint provided by the steel reinforcement. Also, it may be difficult to predict the properties of 
the concrete using certain testing results taken from the structure. The size of the defects caused by the ASR 
may be large compared to a small structure, such as the cylinder (resulting in anomalously low tested 
strength), but the defects are small compared to the larger structure (suggesting there may be sufficient 
capacity). In addition, there is no reliable nondestructive means of estimating the degree of the reaction in 
an existing concrete structure. 

ASR can potentially affect concrete properties and performance characteristics, such as compressive 
strength, the modulus of elasticity, flexural stiffness, shear strength, and tensile strength (Agarwal et al. 
2015). ASR can also impact material properties, but the structural performance of concrete elements 
depends on whether or not the concrete is unconfined or confined within reinforcing bars. The concrete 
core testing was conducted at the Seabrook Station Nuclear Power Plant in February 2011 as part of the 
license renewal submission (NextEra Energy Seabrook 2012). These tests confirmed the presence of ASR-
induced cracks in various structures within the plant and reduced modulus to some extent. Researchers 
evaluated the impact of reduced modulus on ASR-affected structures. This evaluation found that the overall 
structure integrity was still within the strength requirements. 

2.2 Damage Evaluation Techniques for Monitoring Alkali-Silica 
Reaction 

Researchers have studied multiple types of SHM techniques, broadly categorized as contact monitoring 
techniques and non-contact monitoring techniques, for detecting ASR damage in concrete structures. The 
contact monitoring techniques include mechanical deformation measurement, acoustic emission, ultrasonic 
detection, nonlinear impact resonance-acoustic spectroscopy, VAM, and diffuse wave spectroscopy. The 
non-contact monitoring techniques include DIC and infra-red thermography imaging. The standard test 
methods for determining the potential alkali-silica reactivity and for determination of the amount of time 
needed for concrete to change due to ASR are documented in ASTM C1567-13 and ASTM C1293-08b, 
respectively. Earlier reports by Mahadevan et al. (2016, 2017) have studied various techniques and found 
them to be useful in damage detection. The VAM technique, investigated in detail in this report, shows 
particular promise in damage localization. In addition, the DIC technique is investigated in detail with 
respect to the large sample at University of Tennessee, Knoxville (UTK). Below is a brief overview of the 
VAM and DIC techniques. 

 Vibro-Acoustic Modulation 
Vibro-acoustic modulation (VAM), also known as nonlinear wave modulation spectroscopy, is a NDE 

technique that relies on detecting dynamic signature of nonlinear structural behavior as the primary 
indicator of damage. Specifically, VAM aims at detection of modulation of a higher frequency by a lower 
frequency caused by delamination or cracks in structural components. Researchers have demonstrated in 
the past the utility of VAM for detecting debonding flaws and cracks in composites, metals, as well as ASR-
induced cracks in concrete (Chen et al. 2008; Chen et al. 2009).  

In a VAM technique, the structural component of interest is excited simultaneously using a combination 
of two signals of specific frequencies, and the dynamic response is measured at various locations using 
acoustic sensors (accelerometers). The low-frequency input is termed the “pump,” and the high-frequency 
input is termed the “probe” (Kim et al. 2014). The geometric or material nonlinearity in the form of variable 
contact area or nonlinear adhesive bond at the surfaces of a crack or a delamination causes modulation of 
the probing frequency (fpr) by the pumping frequency (fpu). This modulation, and hence the presence of the 
flaw, can be seen in the frequency spectra of measured response as peaks of higher magnitude (sidebands) 
around the probe frequency.  

Researchers used the interaction of these signals at different frequencies to understand the nonlinear 
stress-strain relationship in the structure of interest. For example, Figure 2 shows the response when the 
two excitation signals are theoretically applied to a structure. If the structure is linear and damped, the 
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response in the steady state is the linear superposition of the responses of each signal, and only the linear 
components of Figure 2 will appear in the frequency spectrum of the response.  

Damage in a structure introduces nonlinearity and as a result, the response contains both the probing 
frequency and the pumping frequency in addition to other frequency components such as harmonics of each 
signal and sidebands around the probing signal as shown in Figure 2. Most of the previous work on VAM-
tests has focused on detection of damage based on the presence of side bands in the spectrum of dynamics 
response of the structure. Recently, Singh et al. (Singh et al. 2017) showed that a VAM test can be used for 
damage localization or damage mapping. They hypothesized that the effect of (geometric or material) 
nonlinearities is pronounced near the location of the flaw, and hereafter, the relative magnitude of a 
sidebands-based damage index may enable localization of the flaw. That is, if the spatial distribution 
showing the variation of the damage index is obtained using a sensor grid, the damage is located in the 
neighborhood of sensors exhibiting higher magnitude of the damage index.  

They tested their hypothesis using numerical simulations of VAM in delaminated composite plates. 
They studied damage indices based on various characteristics of spectrum of the dynamic response 
(magnitude of sidebands, probe frequency, pump frequency) of the plate and established the feasibility of 
VAM-based damage localization. Thus, the utility of the damage mapping scheme has been studied for 
homogeneous, anisotropic, thin composite plates by performing numerical experiments. However, 
researchers have not yet investigated the applicability of VAM-based damage mapping to detect and 
localize cracks in structural concrete components. We remark that thick, heterogeneous structural concrete 
components present significant challenges for VAM test set-up, data analytics, and damage mapping. In 
this report we discuss our experimental investigation into various aspects of ASR induced damage (crack) 
localization for concrete components using VAM testing.  

 
Figure 2: The principal of the VAM technique (Kim et al. 2014) 

 Digital Image Correlation 
DIC is an optical non-contact NDE technique that is capable of measuring the deformation, 

displacement, and strain of a structure (Bruck et al. 2012). During the NPP routine pressure tests on 
containment vessels, when the internal pressure reaches 60 psi, it might be possible to use DIC to determine 
deformation of the concrete containment. DIC is capable of detecting surface defects, such as cracks, 
micro-cracks, and spalling, but it is unable to detect any subsurface defects.  

The primary benefit of DIC is in measuring deformation. Therefore, of interest in this study is the ability 
of DIC to detect changes in the dimensions of the slab due to ASR gel expansion. DIC requires a speckled 
pattern on the specimen to anchor observations at different points in time. This also presents a problem for 
the cement brick specimens that are immersed in NaOH solution or water -- the pattern is disturbed and 
partly dissolved in the NaOH solution. However, if the cement brick specimen is cured above water, DIC 
might be applicable. 
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3. CONCRETE SAMPLES 
In this work, we investigate the utility of the VAM and DIC techniques discussed in Section 2.2 for 

monitoring degradation in concrete samples due to ASR. The monitoring techniques are studied with 
concrete samples constructed and cured in the laboratory. These include: (1)a medium-sized concrete slab 
(without reinforcement) with pockets of reactive aggregate cast and cured at Vanderbilt University, 
Nashville, Tennessee; (2) a large reinforced concrete slab with reactive aggregates cast and cured at the 
UT, Knoxville, Tennessee and; (3) concrete blocks (without reinforcement) with reactive and non-reactive 
aggregates cast and cured at the University of Alabama, Tuscaloosa, Alabama. In particular, an uncertainty 
quantification methodology is developed with the VAM technique to quantify the uncertainty in diagnosis. 

3.1  Medium-Sized Concrete Slab at Vanderbilt University  
In this section, we discuss a medium-sized concrete slab of dimensions of 2 ft × 2 ft × 6 in. cast on 

December 21, 2015 and cured at Vanderbilt University. The details on casting and curing process of this 
concrete sample is discussed in detail the report by Mahadevan et al. (2016). Figure 3 shows an image of 
the slab immediately after the mold was removed.  

 
 

 
Figure 3: 2 ft × 2 ft × 6 in. dimension concrete slab. 

Four types of aggregate were placed in pockets at a depth of 3 in. in the four quadrants of the slab 
(Figure 4). The aggregates were placed in pockets instead of being dispersed throughout the slab so that 
the reactivity of each aggregate can be determined independently. Additionally, since the locations of the 
pockets of aggregate are known, this information was used to validate the localization of ASR from 
monitoring perspective. The four types of aggregates used are as follows: 

 
1. Pure silica – powder from local ceramic shop 
2. Maine – coarse aggregate from Maine, donated by University of Alabama  
3. New Mexico – coarse aggregate from New Mexico, donated by University of Alabama 
4. Ontario – coarse aggregate from a quarry in Ontario, Canada, donated by the Ontario Ministry of 

Transportation 
 
From December 21, 2015 to September 2016, the medium-sized concrete slab did not show visual signs 

of degradation due to ASR. In October 2016, researchers observed the first visual evidence of degradation 
due to ASR. Since then, the degradation related damage has become increasingly pronounced. The first 
indication of damage was detected by the two vibration-based technique, NIRAS and VAM. Then 
researchers observed hairline cracks on the surface of the slab, and later, an ASR gel effluent and whitish 
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powder seeped out of the slab. In Figure 4, the red squares identify the locations where researchers observed 
seepage of ASR gel effluent on the sides of the slab. The seepage corresponding to locations marked in red 
squares in Figure 4 is shown in Figure 5, Figure 6, and Figure 7 respectively. 

 

 
Figure 4: Pockets of aggregate in the slab during casting with red squares identifying visually observed 
cracks and effluence on the side of the slab. 

 

 

 

Figure 5: Damage location 1 – cracking and 
powder effluence. 

Figure 6: Damage location 2 – clear gel effluence. 
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Figure 7: Damage location 3 – cracking and powder effluence 
 

4. LABORATORY TESTS FOR DAMAGE DETECTION AND 
LOCALIZATION USING VIBRO-ACOUSTIC MODULATION 

VAM is a vibration-based method that utilizes signatures of nonlinear dynamic interactions on contact 
surfaces of cracks or delamination damage to detect and localize the damage. To the best of our knowledge, 
the applicability of VAM tests in detecting and localizing ASR induced damage (cracks) has not been 
studied in the laboratory. As a part of this research project, VAM tests are conducted on the medium-sized 
slab with reactive aggregate pockets at known locations, as well as on four concrete blocks cast using either 
reactive or non-reactive aggregates. We discuss our findings in this section. 

4.1 VAM Test Setup for Experimental Analysis 
Researchers can induce nonlinear dynamic interactions or a delamination at the surfaces of a crack 

using either an impact or VAM technique.  

In the impact modulation mode, the impact-induced vibrations of the structure modulate a higher 
frequency at the damage interface to produce a dynamic signature of the nonlinearity. In our previous work, 
we tested this approach, but these experiments failed to produce clear indicators of nonlinearity in a 
specimen with ASR damage. Therefore, we use the VAM technique for all the experiments reported. In the 
VAM technique, the structural component of interest is excited using a lower “pump” frequency and a 
higher “probe” frequency. Nonlinear behavior at the interface (variable contact area or nonlinear adhesive 
bond at the interface) causes modulation of the probe frequency by the pump frequency. This can be seen 
as sidebands around the probe frequency in the spectra of measured response in a VAM test. In our 
laboratory experiments, we deliver the pump and probe excitations using piezo-stack actuators. We vary 
the locations of these actuators, as well as the frequencies at which they operate (i.e., the pump and probe 
frequencies).  

We measure the response of the structural component of interest using a finite number of accelerometers 
placed on the surface of the component. The relative magnitudes of sidebands at various accelerometer 
locations are used to map the damage (ASR-induced cracks) in the component. The performance of the 
VAM test depends on the values of parameters used, as well as on the methodology used for processing the 
data collected during a VAM test. We discuss, next, various factors involved in the selection of test 
parameters (fpu, fpr) and data processing methods (baseline adjustment, sideband detection). 

 Pumping Frequency  
    In our laboratory experiments, we used the first fundamental frequency of the slab as well as an 

arbitrary low frequency as the fpu. We estimated the fundamental frequency of the structural component by 
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conducting a hammer test. That is, we excited the structural component using an impact hammer and 
measured the acceleration at various locations using accelerometers. We computed the power spectral 
density (PSD) of the measured acceleration time series using the Welch’s method (Welch, 1967).  

The PSD shows multiple peaks that correspond to natural frequencies of the structure. The first and most 
prominent peak was assumed to be first modal frequency. For Vanderbilt’s medium-sized slab, this value 
was 920 Hz. The frequency of 920 Hz was used as fpu for his slab for all our experiments. For the Alabama 
samples 920 Hz was used as an arbitrary low fpu, in addition to the first modal frequencies for each sample. 
Listed in Table 1 are the modal frequencies found using a hammer test for the Alabama samples.  

 

Table 1: Experimental first modal frequency for each sample 

Slab Sample Approximate First Modal 
Frequency (Hz) 

Vanderbilt’s Medium Slab 920 

Alabama- North Carolina Reactive 1865 

Alabama- North Carolina Control (non-reactive) 2390 

Alabama- Colorado Reactive  1695 

Alabama- Colorado Control (non-reactive) 2240 

 

 Probing Frequency  
    It has been reported in the literature that the fpr should be at least 10 to 20 times the pumping 

frequency (Singh et al. 2017). When the fpr is N times the pumping frequency it allows for the crack to open 
and close N times in a pumping cycle. Thus, the ratio between the pump and probe decides the opportunity 
(number of times per cycle of pumping vibrations) for modulation to occur. In accordance with these 
guidelines, in our experiments we used probing frequencies ranging from 10 kHz to 21 kHz. The amplitude 
and location of the probing signal was also varied in different experiments.  

In numerical studies the fpr worked best for damage localization when it was 1/10th the amplitude of the 
fpu. In general, this is true for our experiments. The acceleration spectra plots do not show this clearly, 
because the ordinates of the spectra are multiplied by the square of the circular frequency. However, in 
linear spectra of displacements, the strength of the probing signal is always less than the strength of the 
pumping signal. In our experiments the pump and probe signal amplitudes were controlled by signal 
(function) generators. We used four amplitudes for the output voltage of the probing signal generator – 500 
mV, 250 mV, 100 mV, or 50 mV. We maintained the output voltage of the pumping signal generator at 500 
mV. The pumping and probing signals were amplified by an amplifier and sent to the piezo-stack actuator. 
A constant amplification factor (+28 dB) was maintained for all tests.  

 Accelerometers  
A maximum of 21 accelerometers were placed on the concrete specimen at a time and connected to 

the data acquisition system. We varied the locations of these accelerometers for each experiment. The 
accelerometers had a sensitivity of 100 mV/g. In previous testing, we only used 12 accelerometers with a 
sensitivity of 10 mV/g. 
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4.2 Calculation of the Damage Index (Sideband Sums) 

 

In our laboratory experiments, multiple accelerometers were placed on concrete specimens cured in an 
aggressive environment (60ºC and 100% relative humidity) to encourage ASR. The slab was excited using a 
pump and a probe frequency, and we recorded the time history of accelerations at different locations on the 
surface of the slab. The LS of the noisy acceleration time history was computed using the Welch’s method 
(Welch, 1967) with zero overlap and a Nuttall-defined, 2048-point, four-term, symmetric, Blackman-Harris 
window (Nuttal, 1981). Linear spectrum (LS) of the acceleration time history was computed from the PSD 
(Figure 8). The nonlinearity in the structural response, or the modulation of the fpr by the fpu, is seen as sidebands 
around the fpr (“peaks” in the LS at frequencies equal to ( ). After computing the LS, the values of 
AmpS1 and AmpS2 (Figure 8) were used to calculate the sideband sums (denoted as SBSum). In this report, 
we discuss mapping of ASR-induced cracks based on the SBSum metric,  
(Figure 8). 

4.3 Data Processing 
The methodology for mapping damage using a sidebands-based damage index has been demonstrated 

using numerical simulations (Singh et al. 2017). However, the various practical aspects of the methodology 
haven’t been studied. For example, the data collected in our experiments contains noise. For the 
experimentally collected data, the linear spectra in neighborhood of the sidebands do not show near-zero 
amplitudes at all sensor locations. Thus, an automated sideband detection algorithm may identify the 
ambient linear spectrum values at ( ) as sidebands.  

In processing the data, we conduct baseline adjustment and other sideband detection techniques. In 
baseline adjustment, we subtracted the average of the LS ordinates in the neighborhood of the sidebands 
from the sideband values calculated from the LS. An automated SBSum calculation process may also be 
misled by considering ordinates at given frequencies that are not peaks (and hence they do not indicate of 
nonlinear structural behavior). To ensure that the values being used to calculate SBSum are physically 
meaningful sidebands, we implemented a method for finding local peaks in the data. In this method, it was 
first determined whether the sideband value for a given frequency was a local peak. Next, we checked 
whether the sideband was a maximum value within a 1000 Hz window centered at the sideband frequency 
of interest. The ordinate value at a given frequency was selected as a sideband only if it satisfies both the 
conditions given above (Mahadevan et al. 2018). 

4.4 VAM Results for the VU Slab 
In this section, we report the results of VAM tests performed on the VU slab. In order to test the damage 

mapping capabilities of VAM-based diagnosis methodology, we divide the slab in four quadrants, and 
perform VAM test with a grid of 21 accelerometers for each half. The pump and the probe actuators are 

Figure 8: LS Plot for an accelerometer labeled to show the values used in calculating SBSum. 
SBSum=AmpS1+AmpS2. 
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placed at the center of each quadrant and the center of the slab (Figure 9). The blue and green circles 
represent the pump and probe actuators. We used different probing amplitudes (50 mV, 100 mV, 250 mV, 
and 500 mV) and probing frequencies of 10 kHz to 21 kHz (by 1000 Hz)) for VAM testing. The fpu was 920 
Hz with a 500 mV amplitude. We conduct VAM tests using these parameters for each quadrant, collect the 
acceleration time series data at each accelerometer location, compute the corresponding LS, and obtain SBSum 
metric. Next, we plot the variation of the SBSum metric over each quadrant using linear interpolation of the 
SBSum metric obtained at accelerometer locations. We juxtapose damage maps for the four quadrants in order 
to obtain a damage map for the entire slab. Figure 10 to Figure 12 show damage maps for three probing 
frequencies.  

 

 
Figure 9: Pump, probe, and accelerometer locations for both halves of the slab (labeled in gray). 

In Figure 10 to Figure 12, the locations of relatively higher SBSum values generally correspond to the 
locations of visible cracking and effluent seepage in the slab. There is a large crack located between 
quadrants 1 and 4. This crack is visible in Figure 11 and Figure 12. We also expect a large amount of 
damage near quadrants 2, 3 and 4, since there is an area of effluent seepage. This is seen in Figure 10 to 
Figure 12, where quadrants 3 and 4 consistently show higher SBsums. 

 
 

Y 
  X 
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Figure 10: SBSum data in the linear spectrum of acceleration given a 500mV Pump of 920 kHz, and 500, 

250, 100, and 50mV Probes of 19kHz for all 5 pump and probe locations. 

 

 
Figure 11: SBSum data in the linear spectrum of acceleration given a 500mV Pump of 920 kHz, and 500, 

250, 100, and 50mV Probes of 20kHz for all 5 pump and probe locations. 
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Figure 12: SBSum data in the linear spectrum of acceleration given a 500mV Pump of 920 kHz, and 500, 

250, 100, and 50mV Probes of 21 kHz for all 5 pump and probe locations. 

 

4.5 VAM Results for the Alabama Slabs 
In this section are reports from VAM test results for four concrete slabs received from the University 

of Alabama. Two of the slabs were cast using reactive aggregate, and the remaining two slabs were cast 
using non-reactive aggregate. We perform VAM tests and we compare the magnitude of damage indices 
for slabs cast using reactive and non-reactive aggregate. We use a grid of 21 accelerometers for VAM 
testing of the Alabama slabs. Figure 13 shows locations of accelerometers as well as pumping and probing 
actuators. We perform the VAM test, acquire acceleration data for each pump/probe location, compute the 
damage index (SBSum) using the baseline adjustment method, and sum the damage indices calculated for 
10 sets of pump/probe locations. We use linear interpolation to obtain damage index variation (damage 
map) over the top surface of the slab.  

 
Figure 13: Accelerometer and pump and probe actuators placement for the Alabama samples. 

The LS for acceleration shows high-magnitude sidebands for the reactive samples and no sidebands for 
the control (non-reactive) samples. This simple observation suggests that VAM tests can be used for 
detection of ASR damage in concrete. The reactive samples show surface cracking, whereas the control 
(non-reactive) samples for both North Carolina and Colorado aggregates do not.  

Y 
  X 
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We perform damage mapping for the Alabama samples using the described method of calculating 
SBsum values. Figure 14 to Figure 17 show damage maps for the pump magnitude of 500mV, the pump 
frequency of 1695 Hz (Table 1), the probe frequency of 19 kHz and four probe amplitude values (50mV, 
100 mV, 250 mV and 500mV). The results for the Colorado Reactive (Figure 14) North Carolina Reactive 
(Figure 16) show a consistent pattern for the distribution of SBSum values. The North Carolina and 
Colorado Reactive samples also show consistently high sidebands for the same region for all probe 
amplitudes. The results for the reactive samples are more consistent for all probing amplitudes, whereas for 
the control samples (Figure 15 and Figure 17), there is no consistency in the values of damage index at a 
particular region on the slab. The control samples also show lower SBsum values for the surface. The larger 
values found along the sides could be an outcome of boundary effect.  

 
Figure 14: SBSum surface diagram for the Colorado Reactive sample with a 1695Hz and 500mV pump 

and a 21kHz probe of various amplitudes using a local peak filter. 

 
Figure 15: SBSum surface diagram for the Colorado Control (non-reactive) sample with a 2240Hz and 

500mV pump and a 21kHz probe of various amplitudes using a local peak filter. 
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Figure 16: SBSum surface diagram for the North Carolina Reactive sample with a 1865Hz and 500mV 

pump and a 19 kHz probe of various amplitudes using a local peak filter.  

 
Figure 17: SBSum surface diagram for the North Carolina Control (non-reactive) sample with a 2390Hz 

and 500mV pump and a probe of various amplitudes using a local peak filter. 

 

4.6 Summary of VAM Results  
In this section, we discussed the results of laboratory experiments aimed at determining the 

effectiveness of VAM tests for detection and localization of ASR-induced cracks in structural concrete 
components. We performed VAM-based diagnosis of a medium-sized slab containing pockets of reactive 
aggregates at known locations, as well as two sets of two slabs cast using either reactive or non-reactive 
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aggregate (mixed throughout the slab). We used a damage index based on sidebands present in the linear 
spectrum of nonlinear dynamic structural response to map the distribution of damage in the concrete slab. 
We discussed some practical aspects of data processing and noise reduction involved in VAM testing for 
real structures. We found that the fundamental frequency of the structure (obtained using a hammer test) is 
the best choice for the pump frequency. For the medium-sized slab containing pockets of reactive aggregate 
at known locations, VAM-based damage mapping revealed damage signatures at locations that showed 
visible signs of ASR damage. The damage map also matched the expected extent of damage based on the 
reactivity of aggregates, i.e., the damage index showed highest damage where pure silica was placed as 
aggregate. For both sets of two Alabama slabs cast using either reactive or non-reactive aggregates, the 
VAM test consistently showed higher sidebands for the slab containing reactive aggregate.  
 

5. UNCERTAINTY QUANTIFICATION IN DIAGNOSIS 
Uncertainty quantification consists of two types of problems – forward problem of uncertainty 

propagation, and inverse problem of statistical inference. In the context of structural health monitoring, 
the forward problem is useful in prognosis; it uses Monte Carlo sampling to propagate uncertainty 
quantities through the model of the system to quantify the uncertainty in the model-based prediction of 
the system performance (e.g., damage growth). The inverse problem is useful in diagnosis, where the 
observed data is used to infer the state of damage in the structure. The Bayesian approach used in this 
study for the inverse problem requires Markov Chain Monte Carlo sampling. Both the basic and Markov 
chain-based sampling techniques require a large number of evaluations of the physics model, which can 
be prohibitively expensive. Therefore an inexpensive surrogate model is first trained using physics model 
runs, and the surrogate model can be used for diagnosis and prognosis uncertainty quantification.  

In other cases, a physics model may not be available. In that case, a data-driven surrogate model 
connecting the inputs and the output is constructed based on experimental observations, making surrogate 
model construction is an important first step in uncertainty quantification. The surrogate model in this 
study is built using the VAM experimental data collected on the Vanderbilt and Alabama slabs; the data 
collection and analyses were described in the previous sections, and the surrogate model construction is 
described in this section.  

5.1 Neural Network 
Many types of surrogate modeling techniques have been studied in the literature, such as simple 

regression fits, polynomial chaos, radial basis functions, Kriging, support vector machines, and neural 
networks. The neural network approach is pursued in this study to train a data-driven model to predict 
SBSUM, as a function of various testing parameters (such as probe frequency, and amplitudes of pump 
and probe excitations). The neural network approach has the advantage of being able to process large 
amounts of data that are likely to be available in the monitoring actual NPP structures.  

An artificial neural network consists of functions arranged in a series of layers. Input values feed into 
the system and pass through the hidden layers before arriving at the output value for that input. The 
learning method is backpropagation, where the difference between the output of the network and the 
actual output is minimized (Lapedes, 1988). The neural network used for the Vanderbilt slab is shown in 
Figure 18. It considers 6 inputs: Probing excitation frequency, probing excitation amplitude, X coordinate 
of the pump and probe location, Y coordinate of the pump and probe location, X coordinate of the 
accelerometer location, and Y coordinate of the accelerometer location. The output variable is SBsum. 
The model has 40 hidden layers and uses the Levenberg-Marquardt method for training.  
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Figure 18: Neural Network for the Vanderbilt slab with 6 inputs, 1 output, and using 40 layers. 

The data was split for training (70%), testing (15%), and validation (15%) of the model. Figure 19 
shows the regression plots for the data. Overall the fit of the model is moderate; however, the error 
histogram in Figure 20 shows error close to zero; also, the model had a very low mean square error value.  

 
Figure 19: Regression plots for the Vanderbilt slab neural network. 
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Figure 20: Histogram of errors using the Vanderbilt slab neural network model. 

In order to demonstrate the performance of the predictive model, we compare the output of the model 
with experimental results. Figure 21 and Figure 23 show the experimental results from the SBsum and 
Figure 22 and Figure 24 are the results corresponding same test parameter values from the prediction 
model. For Figure 22 the probing frequency is 20 kHz and the amplitude is 500 mV with the pump and 
probe at the center of the slab. The overall area of damage in the predicted model is similar to the 
experimental results in Figure 21. For Figure 24 the probing frequency of 16 kHz and the amplitude is 
100 mV with the pump and probe at the center of quadrant 2. Again, the predicted damage area was 
similar to the experimental results in Figure 23. The higher SBsum values are at the top-center of the slab 
for both. The value of the predicted SBsum is also in the same magnitude as the actual results for both 
examples.  

 
Figure 21: Experimental SBsum results of the Vanderbilt slab using a probing frequency of 20 kHz, a 

probing amplitude of 500 mV and the pump and probe in the center of the slab. 
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Figure 22: Neural Network SBsum results of the Vanderbilt slab using a probing frequency of 20 kHz, a 
probing amplitude of 500 mV and the pump and probe in the center of the slab. 

 
Figure 23: Experimental SBsum results of the Vanderbilt slab using a probing frequency of 20 kHz, a 

probing amplitude of 100 mV and the pump and probe in the center of quadrant 2. 
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Figure 24: Neural network SBsum results of the Vanderbilt slab using a probing frequency of 16 kHz, a 

probing amplitude of 100 mV and the pump and probe in the center of quadrant 2. 

 
A neural network was also trained to predict the SBsum values for the North Carolina Reactive 

sample. This model used the same 6 inputs and outputs as the Vanderbilt model, but has 75 layers, instead 
of 40. The regression for the training, testing, and validation data is shown in Figure 25. Similar to the 
Vanderbilt model, the regression is not very good, but the overall error in the model remains low (Figure 
26).  

 
Figure 25: Plots of the regression for the North Carolina Reactive sample neural network. 
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Figure 26: Error histogram for the North Carolina Reactive sample neural network.  

 
Again, we compare the output of the data-based model with experimental results. Figure 27 and 

Figure 29 show the experimental results, and Figure 28 and Figure 30 are the corresponding results from 
the prediction model. For Figure 28 the probing frequency is 21 kHz and the amplitude is 500 mV with 
the pump and probe at configuration 10 (Figure 13). The overall area of damage predicted by the model is 
similar to the experimental results in Figure 27. Sensors with higher SBsum values are located on the 
right side of the slab for both images. For Figure 30 the probing frequency of 18 kHz and the amplitude is 
250 mV with the pump and probe are at configuration 7 (Figure 13). Again, the predicted damage area 
was similar to the actual results in Figure 29. The value of the predicted SBsum is also in the same 
magnitude as the actual results for both examples. 
 
 

 
Figure 27: Experimental SBsum results of the North Carolina Reactive sample using a probing frequency 

of 21 kHz, a probing amplitude of 500 mV and the pump and probe at configuration 10 (Figure 13). 
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Figure 28: Neural network SBsum results of the North Carolina Reactive sample using a probing 

frequency of 21 kHz, a probing amplitude of 500 mV and the pump and probe at configuration 10 (Figure 
13). 

 

 
Figure 29: Experimental SBsum results of the North Carolina Reactive sample using a probing frequency 

of 18 kHz, a probing amplitude of 250 mV and the pump and probe at configuration 7 (Figure 13). 

 
Figure 30: Neural network SBsum results of the North Carolina Reactive sample using probing frequency 

of 18 kHz, a probing amplitude of 250 mV and the pump and probe at configuration 7 (Figure 13). 

The neural network used to train the model for the Colorado Reactive sample used the same 6 inputs 
and outputs as the Vanderbilt and North Carolina models. The network used 80 layers. Figure 31 shows 
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the regression for the training, testing, and validation data. Figure 32 shows the error histogram. This 
model had the highest regression.  

 
Figure 31: Plots of the regression for the Colorado Reactive sample neural network. 

 
Figure 32: Error histogram for the Colorado Reactive sample neural network. 

Figure 33 and Figure 35 show the actual experimental results from the SBsum and Figure 34 and 
Figure 36 are the corresponding results from the prediction model. For Figure 34 the probing frequency is 
21 kHz and the amplitude is 500 mV with the pump and probe at configuration 10 (Figure 13). The 
overall area of damage in the predicted model is similar to the experimental results in Figure 33. The 
higher SBsum is located at the right side of the slab for both images. For Figure 36 the probing frequency 
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is 18 kHz and the amplitude of 250 mV with the pump and probe at configuration 7 (Figure 13). Again, 
the predicted damage area was similar to the actual results in Figure 35. 

 
Figure 33: Experimental SBsum results of the Colorado Reactive sample using a probing frequency of 20 

kHz, a probing amplitude of 250 mV and the pump and probe at configuration 1 (Figure 13). 

 
Figure 34: Neural network SBsum results of the Colorado Reactive sample using a probing frequency of 

20 kHz, a probing amplitude of 250 mV and the pump and probe at configuration 1 (Figure 13). 

 
Figure 35: Experimental SBsum results of the Colorado Reactive sample using a probing frequency of 17 

kHz, a probing amplitude of 100 mV and the pump and probe at configuration 6 (Figure 13). 
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Figure 36: Neural network SBsum results of the Colorado Reactive sample using a probing frequency of 

17 kHz, a probing amplitude of 100 mV and the pump and probe at configuration 6 (Figure 13). 

5.2 Sensitivity Analysis 
One of the benefits of the surrogate model built in Section 5.1 is the ability to perform sensitivity 

analysis, to assess the relative contributions of the various experimental parameters to the overall 
uncertainty in the model prediction. Sensitivity analysis can be local or global; local sensitivity analysis is 
based on derivatives, whereas global sensitivity analysis estimates the contribution of the entire range of 
variation of the experimental parameter to the variance of the model output. Global sensitivity analysis is 
much more appropriate and useful in the context of this study.  

Global sensitivity analysis estimates the contribution of each input variable to the variance of the 
model output. In the context of this study, “model” refers to the neural network surrogate model. “Inputs” 
refers to the experimental parameters (pump and probe frequencies, amplitudes, and locations). The 
“output” refers to SBSUM, the sum of the sideband amplitudes. The contribution to output variance is 
estimated using Sobol sensitivity indices, measuring either individual effect of each input separately, or 
the interactive effect of multiple inputs.  

Consider a computational model in the form of  where  is the vector of 
stochastic model inputs. The first-order (individual effect) Sobol’ index  is 

 (1) 

where  means all the model inputs other than .  quantifies the contribution of input  by itself to 
the uncertainty in output . The total effects index  for  is the total contribution of  by itself as well 
as due to interactions with other inputs. The  can be computed as: 

  (2) 

The individual effects and total effects indices of the inputs can be computed using Monte Carlo sampling 
using the neural network surrogate model. In order to do this, the probability distributions of the inputs 
need to be characterized. In this study, all the inputs (experimental parameters) are controlled by the 
experimentalist and a range of values are chosen; therefore, it is appropriate to use uniform distributions 
to represent the variability of the experimental parameters. These statistics are shown in Table 2. The 
results of sensitivity analysis, based on 10000 Monte Carlo samples, are shown in Tables 3 to 5. 
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The sensitivity of each variable using the Vanderbilt slab neural network (Figure 18) shown in Table 3 
indicates that the significant variables for the Vanderbilt prediction model are probing frequency, and the 
configuration location. The sensitivity for the North Carolina Reactive variables (Table 4) and the Colorado 
Reactive variables (Table 5), are similar to the Vanderbilt sample sensitivities: the predicted SBsum value 
is highly dependent upon the configuration location of the pump and probing actuators. The major 
difference between the models is that the first-order indices of the probing frequency in the North Carolina 
and Colorado Reactive sample models are not high, therefore the variable is not very significant in these 
models. Note that the Vanderbilt slab has four specific pockets of aggregates midway through the thickness 
of the slab, whereas the Alabama slabs have aggregates distributed throughout the samples. This difference 
in configuration explains the difference in sensitivity results for the two slabs.  
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Table 2: Variable range for uniform sampling 

Variable Range 

Probing Frequency 10000-21000 

Probing Amplitude 50-500 

Pump and Probe Location X 0-24 

Pump and Probe Location Y 0-12 or 0-24 

Accelerometer X 0-24 

Accelerometer Y 0-12 or 0-24 

 

Table 3: Sensitivity analysis of the neural network for the Vanderbilt sample. 

Variable First-order Index Total Effects 

Probing Frequency 0.2553 1.0228 

Probing Amplitude 0.0608 0.3365 

Pump and Probe Location X 0.1731 2.5286 

Pump and Probe Location Y 0.4771 2.9082 

Accelerometer X 0.0182 0.1083 

Accelerometer Y 0.0156 1.6438 

 

Table 4: Sensitivity analysis of the neural network for the North Carolina Reactive sample. 

  

 

 

Variable First-order Index Total Effects 

Probing Frequency 0.0053 0.8096 

Probing Amplitude 0.0381 0.3696 

Pump and Probe Location X 0.0022 1.7035 

Pump and Probe Location Y 0.9172 3.2141 

Accelerometer X 0.0115 0.2062 

Accelerometer Y 0.0257 0.2903 
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Table 5: Sensitivity analysis of the neural network for the Colorado Reactive sample. 

 

 

 

 
 

 

 

 

 
5.3 Damage Probability 

Due to the presence of multiple sources of uncertainty, the presence of damage in any particular 
location cannot be determined as a “yes” or “no” result. Instead, this section develops a methodology to 
obtain an estimate of damage probability at each location in the slab, thus accounting for the uncertainty. 
This can be done using either the experimental data or the neural network surrogate models. Here, we 
study both approaches.  

With respect to experimental data, researchers performed VAM tests using multiple combinations of 
test parameters (probe frequency, probe amplitude, pump/probe location). Damage probability can be 
approximately measured by determining how frequently damage is detected at a given sensor over all the 
test combinations. VAM-based damage detection method utilizes “relative” magnitude of SBsum at 
sensor locations to determine the presence of damage. Therefore, for each test, we compute the mean 
value and standard deviation of SBsum values computed at all sensor locations. The sensors exhibiting an 
SBsum value at least one standard deviation away from the mean SBsum value are marked as sensors 
showing the presence of damage. We count how often a given sensor showed the presence of damage in 
all our tests. We expect that the probability of damage will be higher in the vicinity of a sensor that 
consistently shows the presence of damage (i.e. a sensor at which the SBsum value is most frequently at 
least one standard deviation away from the mean).  

Figure 37 to Figure 39 show the estimated damage probabilities using the above method for the 
experimental test data on the concrete slab specimens. The Vanderbilt sample shows the highest 
probability of damage in quadrants 3 and 4, and in between quadrants 1 and 4 (Figure 37). We can 
currently see a large crack in the slab between quadrants 1 and 4. The highest probability of damage in the 
North Carolina reactive aggregate sample occurs at accelerometers 8 and 20 (Figure 38). This area 
corresponds to the sensors that are most excited in Figure 16. For the Colorado reactive aggregate sample, 
the highest probability of damage occurs around sensors 14, 17, and 20; located in the center of the right 
side of the slab.  

Variable First-order Index Total Effects 

Probing Frequency 0.0553 0.2540 

Probing Amplitude 0.0472 0.4937 

Pump and Probe Location X 0.3493 0.9646 

Pump and Probe Location Y 0.5240 1.2955 

Accelerometer X 0.0186 0.1411 

Accelerometer Y 0.0056 0.1008 
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Figure 37: Damage probability map (using experimental data) for the Vanderbilt sample. 

 

 
Figure 38: Damage probability map (using experimental data) for the North Carolina Reactive sample. 
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Figure 39: Damage probability map (using experimental data) for the Colorado Reactive sample. 

The neural network surrogate model developed in Section 5.1 can also be used for uncertainty 
quantification in diagnosis and compute the damage probabilities at different locations in the slab. The 
same Monte Carlo samples that were generated for the sensitivity analysis in Section 5.2 can be used for 
this purpose. The samples of the inputs are drawn based on the distributions listed in Table 1, and 
propagated through the neural network surrogate model to calculate the corresponding value of SBSUM. 
Based on these results, the statistics of SBSUM at each location can be calculated, reflecting the 
uncertainty in SBSUM.  

 Each location is identified as damaged or not based on whether its SBSUM value exceeds a specified 
threshold value. Once the distribution of SBSUM at any location is obtained as above, it is 
straightforward to calculate the probability of damage at any location based on the same Monte Carlo 
samples generated above. Using this calculation, the uncertainty in the diagnosis result is quantified as the 
probability of damage at any location.  

 In order to compare the neural network prediction with the experimental data in terms of quantifying 
the uncertainty in damage diagnosis, here we simply duplicated the experimental conditions using the 
neural network model. Thus, the same conditions used in the experiments are used as inputs to the neural 
network model, and the output SBSUM values at the different sensor locations are noted. Then the 
damage probability maps are developed in the same manner as with experimental data above. 

Figure 40 to Figure 42 show the estimated damage probabilities using the SBsum values predicted by the 
neural network model. The Vanderbilt sample shows the highest probability of damage in quadrants 1, 3 
and 4, and in between quadrants 1 and 4 (Figure 40). The predicted model shows a lower probability of 
damage in quadrant 3 than the experimental results. The highest probability of damage in the North 
Carolina Reactive sample occurs at accelerometers 8 and 20 (Figure 41). These are the same locations as 
the experimental data shows (Figure 38). For the Colorado Reactive sample, the highest probability of 
damage occurs around sensors 1, 14, 16, 17, and 20; located in the center of the right side of the slab 
(Figure 42). These results for the predictive models of all of the samples are similar to the damage 
probabilities seen with the experimental results.  
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Figure 40: Damage probability map (using neural network) for the Vanderbilt sample. 

 
Figure 41: Damage probability map (using neural network) for the North Carolina Reactive sample. 

 
Figure 42: Damage probability map (using neural network) for the Colorado Reactive sample. 



 

 32 

The damage probability maps integrate the results of multiple experimental conditions to quantify the 
uncertainty in diagnosis, and provide practical decision support for prognostics and health management 
(PHM). As noticed in Section 4, different experimental conditions gave different inferences regarding the 
presence of damage at any location. The proposed damage probability method integrates the inferences 
over all the experimental conditions. The agreement between the experimentally estimated damage 
probability maps and the surrogate model-predicted damage probability maps is encouraging. The benefit 
of the neural network is the ability to predict the SBSUM value at any location, and not being limited 
only to sensor locations as in the experiments. Limitations of resources, space, time, accessibility, etc. 
would limit the number of sensors that can be placed in experimental data collection. This means the 
neural network can be trained with the experimental data to predict the damage probability at any location 
on the specimen, for any combination of experimental parameters. The additional important benefit of the 
neural network model is sensitivity analysis, as detailed in the previous subsection. 

 

6. LABORATORY TESTS FOR DAMAGE DETECTION USING 
DIGITAL IMAGE CORRELATION 

The DIC technique was applied to the large concrete slab cast at the University of Tennessee, 
Knoxville. Digital DIC is a three-dimensional, full-field, optical NDE technique to measure contour, 
deformation, vibration, and strain. The technique can be used for many tests, including tensile, torsion, 
bending, and combined loading for both static and dynamics applications.  

6.1 DIC Test Setup 
An experimental setup for three-dimensional DIC and data analysis includes following steps: 

1. Preparation: Two cameras are mounted at either end of a tripod camera (base) bar so researchers know 
the relative position and orientation of the two cameras with respect to each other. We apply a random 
or regular pattern with good contrast to the surface of the test object. The initial imaging processing 
defines unique correlation areas, known as facets, across the entire imaging area and that typically range 
in size from 5 to 20 square pixels. 

2. Data acquisition and processing: An image correlation algorithm tracks the movement of these facets 
by utilizing mathematical methods to maximize the similarity measures from successive images. We 
can then calculate the three-dimensional locations of each facet and obtain full-field displacement data 
by tracking these measurement facet points within the applied random (or regular) target pattern. 

3. Results: When measurements are taken, they give us an out-of-plane displacement (or deformation) 
map for the entire surface for each point in time. Calculations using the displacement maps at different 
times during the testing period or long-term operation show the progression of  expansion or relaxation 
of structure affected by various degradation mechanisms, including the ASR. 

As part of the inter-pathway collaboration within the Light Water Research Sustainability Program, 
Vanderbilt University is conducting research to investigate the monitoring of degradation in concrete 
sample at the University of Tennessee - Knoxville due to ASR using the DIC technique. A black-
background-white-speckle pattern using acrylic latex paint was selected and applied to the slab. At the same 
time, the supporting fixtures for the DIC camera were also installed inside the environmental chamber. The 
technical basis for selecting optimal experimental settings were discussed in the Neal et al. (2016). 
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6.2 DIC Results 

The results for the DIC strain calculations are shown in Table 6, along with the date the tests were 
conducted and other variables. Figure 43 shows the plot for the average strains calculated using DIC in the 
X and Y directions over time. There is a large spike in the stain in both the X and Y directions during the 
month of February 2017. There is also an increase in June 2018 when the temperature of the slab was 
increased to try and further expansion. The strain then decreases in August 2018 when the temperature was 
lowered again.  

Table 6: DIC measurements taken bimonthly on the slab. 

Date Time of 
Meas. 

Stage Average Δεx 
(μm/m) 

Average Δεy 
(μm/m) 

Facets Facet % 
Loss 

T (ºC) 
Slab 

8/18/2016 1-2pm 0 --- --- 15021 0 28.4183 

10/17/2016 9-11am 11 1320 1090 14699 -2.14 38.2511 

12/12/2016 9-11am 26 Bad Data Bad Data --- --- 37.8926 

2/17/2017 9-11am 31 2240 1930 14644 -2.51 36.7511 

4/22/2017 9-11am 36 1780 1610 14545 -3.17 33.099 

6/28/2017 9-11am 46 1750 1580 14683 -2.25* 37.8002 

8/24/2017 9-11am 66 1700 1510 14706 -2.10** 23.9259 

10/19/2017 9-11am 76 1620 1430 14532 -3.26 23.9 

12/15/2017 9-11am 86 1650 1470 14605 -2.77 23.9 

03/21/2018 9-11 am 96 1720 1560 14541 -3.20 23.8 

06/27/2018 9-11 am 116 1850 1640 14653 -2.45 31.8 

08/16/2018 9-11 am 126 1680 1500 14668 -2.35 24.7 

*+1.01% facet gain on 6/28 compared to 4/22 is due to increased LED lighting. 
**+.015% facet gain on 8/24 compared to 6/28 is likely due to lighting and/or camera position change. 
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Figure 43: Plot of the average DIC strain in the X and Y directions over time. 

7. SUMMARY AND FUTURE WORK 
The objectives of this report were to examine the application of VAM and DIC techniques in ASR 

damage diagnosis and to develop approaches for uncertainty quantification in diagnosis. Researchers 
applied the VAM technique to a 24 in. x 24 in. x 6 in. slab cast at Vanderbilt University with four pockets 
of reactive aggregates, and four 24 in. x 12 in. x 12 in. slabs with reactive and non-reactive aggregates 
(dispersed throughout the slabs). The DIC technique was applied to a large concrete mock-up at the 
University of Tennessee, Knoxville. The main outcomes of the experiments and subsequent analyses 
include: 

1. VAM successfully detected and localized the damage in the medium-sized concrete slabs from both 
Vanderbilt and Alabama. The occurrence of sidebands is dependent on the pumping and probing 
actuator locations, the two excitation amplitudes, and the two excitation frequencies.  

2. The uncertainty quantification effort first developed a neural network surrogate model to speed up 
the forward and inverse problems in uncertainty quantification.  

3. The neural network model is verified by comparison with the experimental data, and the agreement 
is observed to be moderate. 

4. The neural network model is employed to quantify the uncertainty in the damage diagnosis, 
showing the result as probability of damage at each location. 

5. The neural network is also employed for sensitivity analysis, thus quantifying the relative 
contributions of different experimental parameters on the uncertainty of the damage diagnosis. 

6. The monitoring of the large specimen at the University of Tennessee is complete, and the DIC 
analysis results presented in this report cover the entire range of DIC data collected over the two-
year period.  
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Future work needs to focus on the following issues: 

1. The VAM technique has generally shown good performance in terms of identifying the damage 
locations. Future work needs to focus on scaling up the technique to large-scale, field 
implementation of VAM-based diagnosis in NPP concrete structures. One of the key challenges is 
the number of sensors (accelerometers) needed. For a large structure, it is not feasible to use a large 
number of accelerometers. It might be beneficial to instead use a remote-sensing full-field 
observation technique (such as laser vibrometry).  

2. Scaling up VAM to realistic applications also requires the combination of computational modeling 
with experiments to further improve the damage localization. A related issue is the effect of 
uncertainty in diagnosis and prognosis, due to sensor noise, model uncertainty, and many other 
sources of concrete variability.  

3. The uncertainty quantification methodology presented in this report was applied to VAM-based 
diagnosis and prognosis. However, the methodology is general, and is capable of being applied to 
multiple technique that collect spatially distributed data. Future work needs to investigate the 
incorporation of uncertainty quantification in developing a robust Prognostics and Health 
Management (PHM) framework. 
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